Mott Law as Upper Bound for a Random Walk in a Random Environment
نویسنده
چکیده
We consider a random walk on the support of an ergodic simple point process on R, d ≥ 2, furnished with independent energy marks. The jump rates of the random walk decay exponentially in the jump length and depend on the energy marks via a Boltzmann–type factor. This is an effective model for the phonon–induced hopping of electrons in disordered solids in the regime of strong Anderson localization. Under some technical assumption on the point process we prove an upper bound for the diffusion matrix of the random walk in agreement with Mott law. A lower bound for d ≥ 2 in agreement with Mott law was proved in [8].
منابع مشابه
6 Mott Law for Mott Variable – Range Random Walk
We consider a random walk on the support of an ergodic simple point process on R d , d ≥ 2, furnished with independent energy marks. The jump rates of the random walk decay exponentially in the jump length and depend on the energy marks via a Boltzmann–type factor. This is an effective model for the phonon–induced hopping of electrons in disordered solids in the regime of strong Anderson locali...
متن کاملA PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS
A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...
متن کاملA Random Walk with Exponential Travel Times
Consider the random walk among N places with N(N - 1)/2 transports. We attach an exponential random variable Xij to each transport between places Pi and Pj and take these random variables mutually independent. If transports are possible or impossible independently with probability p and 1-p, respectively, then we give a lower bound for the distribution function of the smallest path at point log...
متن کاملDiffusivity in One - Dimensional Generalized Mott Variable - Range Hopping Models
We consider random walks in a random environment which are generalized versions of well-known effective models for Mott variable-range hopping. We study the homogenized diffusion constant of the random walk in the one-dimensional case. We prove various estimates on the low-temperature behavior which confirm and extend previous work by physicists. 1. Introduction. Random walks among randomly dis...
متن کاملMott law as lower bound for a random walk in a random environment
We consider a random walk on the support of a stationary simple point process on Rd, d ≥ 2 which satisfies a mixing condition w.r.t. the translations or has a strictly positive density uniformly on large enough cubes. Furthermore the point process is furnished with independent random bounded energy marks. The transition rates of the random walk decay exponentially in the jump distances and depe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008